职称/职务:教授
E - mail:qll71125@163.com
研究领域:微分方程稳定性
来校时间:1998年
个人简介:
1991-1995年,金沙集团1862cc橙色数学系,获理学学士学位;1995-1998年,金沙集团1862cc橙色数学系,获理学硕士学位;2003-2006金沙集团1862cc橙色数学与信息科学金沙集团1862cc橙色,获理学博士学位。1998年至今,金沙集团1862cc橙色数信金沙集团1862cc橙色教师;2003年香港大学访问学者。
教学情况:主讲《常微分方程》,《数学分析》,《时标动力方程》,《分数阶微分方程》等专业课程。
科研情况
主持和参加的科研项目
微分动力系统中的几个随机问题,国家自然科学基金(11771118)
平面退化系统及Lienard系统分支问题研究,国家自然科学基金(11571090)
可微系统的熵、Lyapunov指数及体积增长的关系,国家自然科学基金(11071054)
几类平面近哈密顿系统的一阶Melnikov函数及分支问题研究,国家自然科学基金(11971145)
光滑动力系统中的熵及其相关问题,国家教育部项目(211020)
脉冲时标动力方程解的性质的研究,河北省自然科学基金(A2011205012)
具有连续变量的差分方程解的性质的研究,河北省自然科学基金(103141)
公开发表的学术论文代表作
Some generalized Gronwall-like retarded inequalities in two independent variables on time scales, Journal of Applied Analysis and computation, Vol. 4, 339-353,2014.
An Opial-type inequality on time scales. Absract and Applied Analysis, Article ID 534083, 5pages, 2013.
Interval oscillation criteria for second order forced delay differential equations under impulse effects, Electronic J. Diff. Equa., 2013(44):1-11, 2013
Existence of positive solutions of advanced differential equations, Advanced in Difference equations, 2013, 2013 : 158, doi: 10.1186/1687-1847-2013-158.
On inequalities of Lyapunov for two-dimensional nonlinear dynamic systems on time scales, Absract and Applied Analysis, Article ID 830595, 8pages, 2013.
Principal and nonprincipal solutions of impulsive dynamic equations with Applications, J. Appl. Anal. Comput., Vol. 2, 2012, 431-440
Oscillatory criteria for third order difference equation with impulses, J. Comp & Appl. Math, 225(2009), 80-86.
Positive solutions for higher order nonlinear neutral dynamic equations on time scales, Appl.Math.Model., 33(2009), 2455-2463.
Oscillation of solutions to impulsive dynamic equations on time scales, Eelectronic J. Diff.Equa., 2009(2009), No.122, 1-7.
New oscillatory criteria for higher-order nonlinear neutral delay differential equation, Nonlinear Analysis, 69(2008), 1719-1731.
Existence of nonoscillatory solutions for higher order neutral dynamic equations on time scales, J. Appl Math Comput, 28(2008), 29-38.
Existence of nonoscillatory solutions of higher-order difference equations with positive and negative coefficients, Bull. Korean Math.Soc, 45(2008), No. 1, 23-31.
Oscillation of second order self-conjugate differential equation with impulses,Journal of Computational and Applied Mathematics,Vol.197(2006),78-88.
Oscillation of sublinear difference equations with positive neutral term, Journal of Applied Mathematics & Computing,Vol.20(2006), No.1-2, 305-314.
Asymptotic behavior of second order neutral difference equations with maxima, 数学研究与评论,Vol.26(2006), No.2, 191-198.